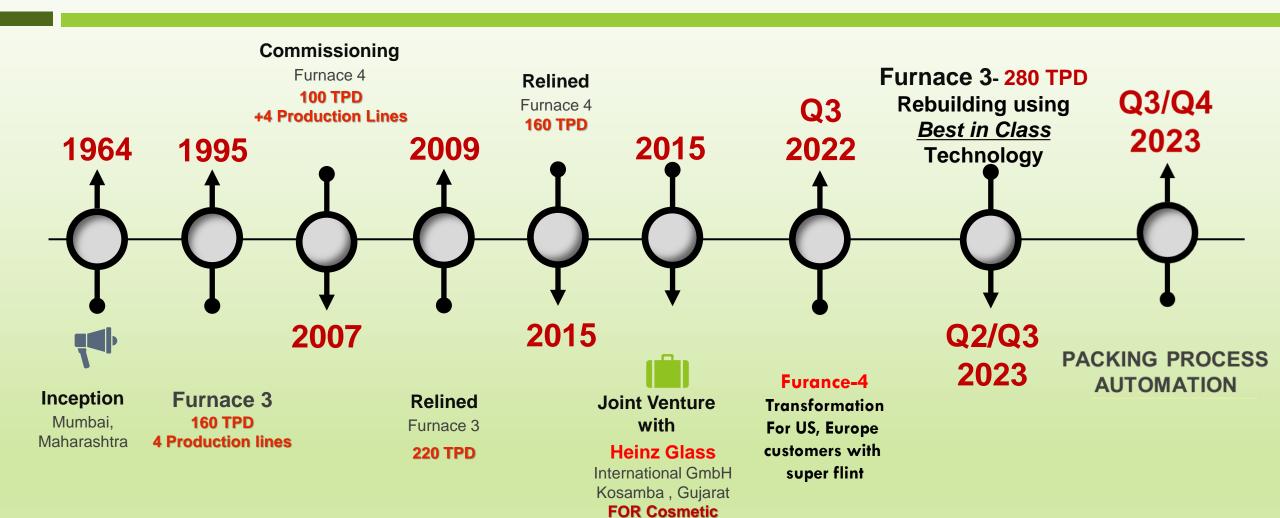


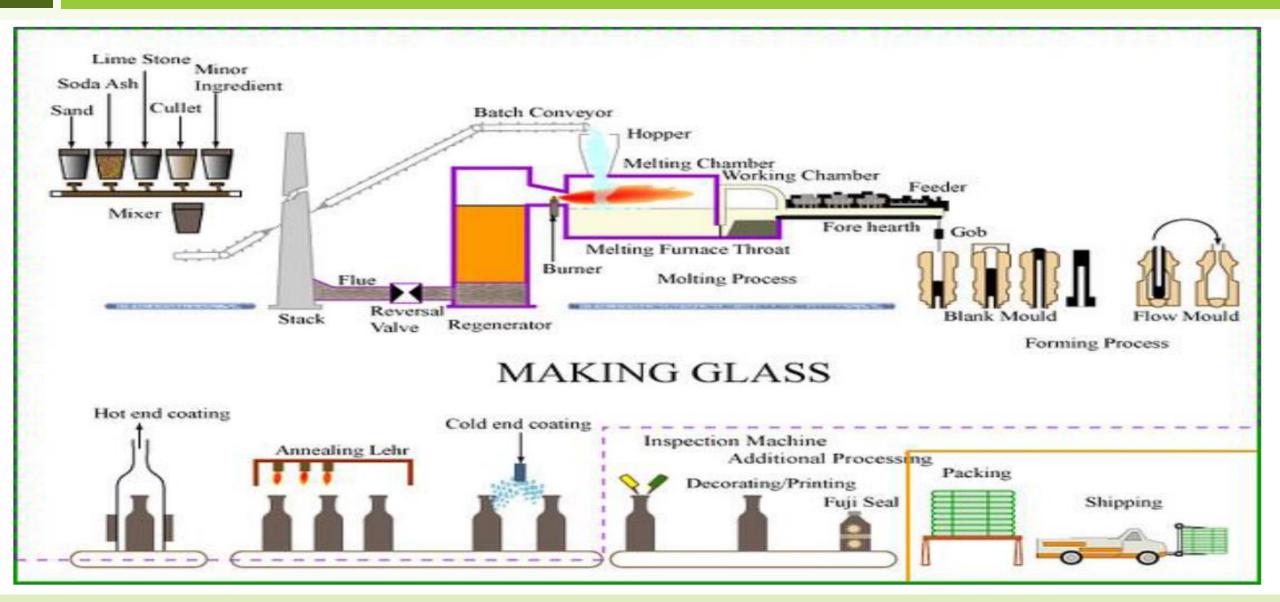
CII NATIONAL AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT – 2024


Presented by:

Mr. Manraj Meena - Head - Plant Operations

Mr. Deepak Gaikwad - DGM - Engineering Services

Mr. Deepak Singh - Asst Manager - Engineering Services


Our History

Range

Process Flow Chart

Infrastructure Highlights

Technology: Forming by Blow-Blow, Press-Blow

Product Range – 25 ml to 1750 ml Glass Containers

Melting Capacity – 445 Tons Per Day (TPD)

Melting technology: End fired Regenerative Design by Horn Germany

Forming Machines: 09 Lines comprising of SG/DG/TG from Bottero, Emhart & BDF

Hot end Coating by Vidromicanica and IMACA, Netherlands

Annealing Lehrs by Antonini, Italy

Inspection Technology by HEYE-Germany, IRIS and DATIA

Utilities – Air compressors by Atlas Copco, Ingersoll Rand, Kaeser and Air Blowers by LWN, Germany, Scrapper by Carmet, Single liners by KHS, Ware handling by Sheppee

Commitment

Our Vision:

To become a niche, and most trusted glass Container partner, offering the most exciting & innovative range of glass packaging solutions for quality conscious customers in India, US and Europe

Our Mission

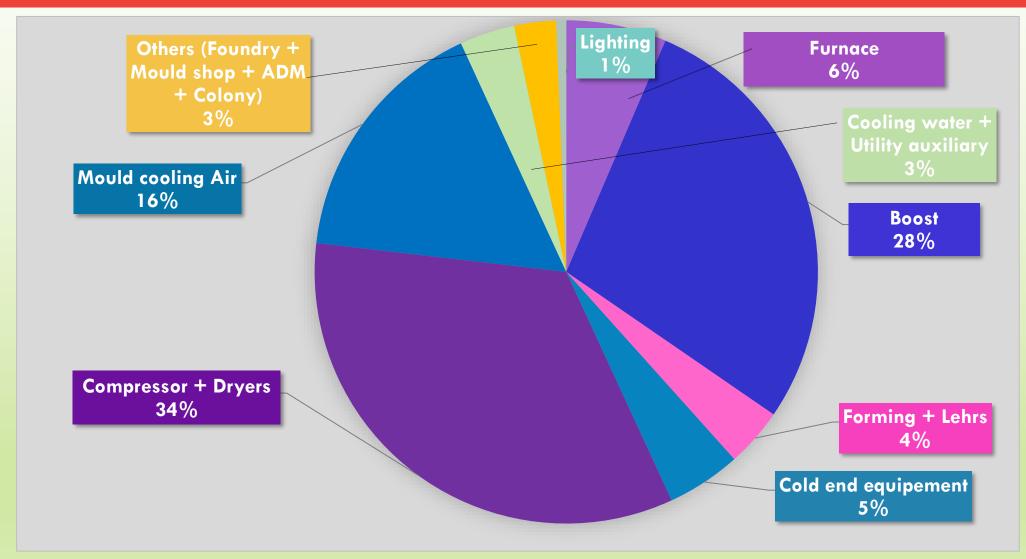
To provide attractive glass packaging solutions to our customers to promote Glass for all personal consumption products emphasizing attributes like, safety, taste retention & visual appeal because more glass means less plastic — which is good for environment

◆ Certifications

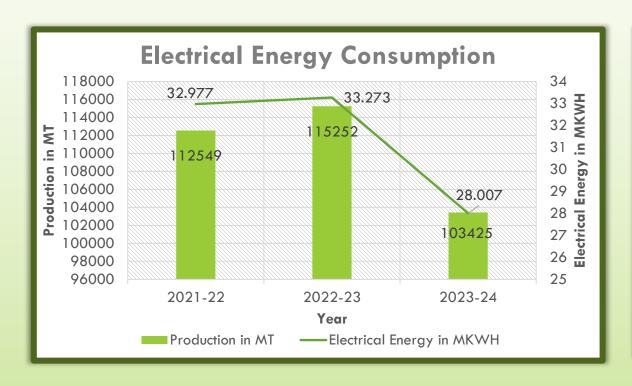
(Social Ethical Data Exchange)

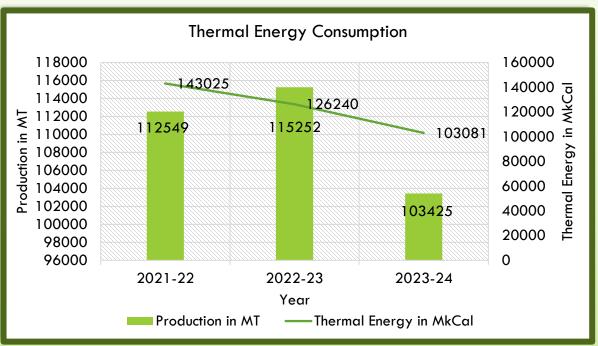
ISO 9001 : 2015 (QMS)

ISO 14001 : 2015 (EMS)

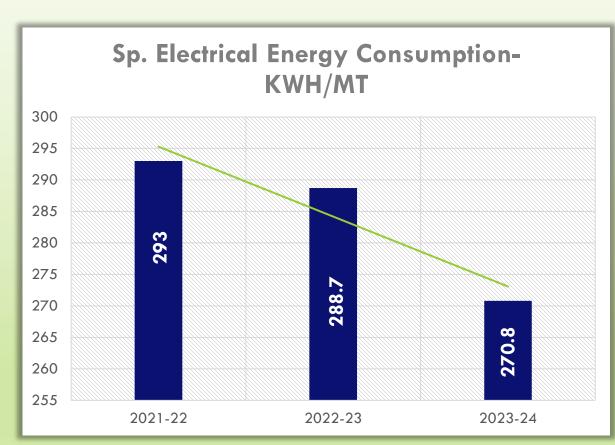

FSSC v 5.1 22000 (Food Safety)

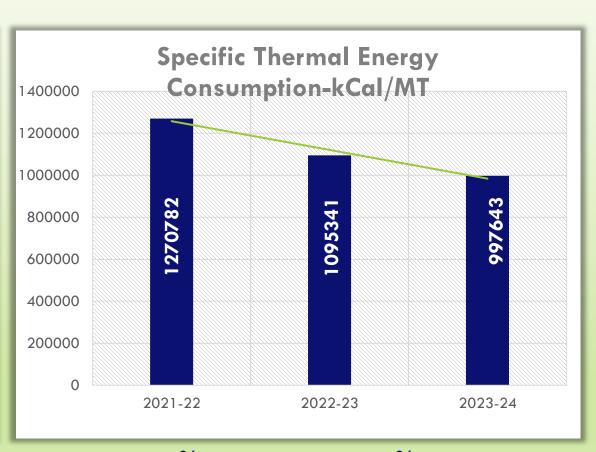
SMETA 6,1 4 Pillar Audit




Electrical Power Consumption centers

Electrical and Thermal Energy Consumption Trend

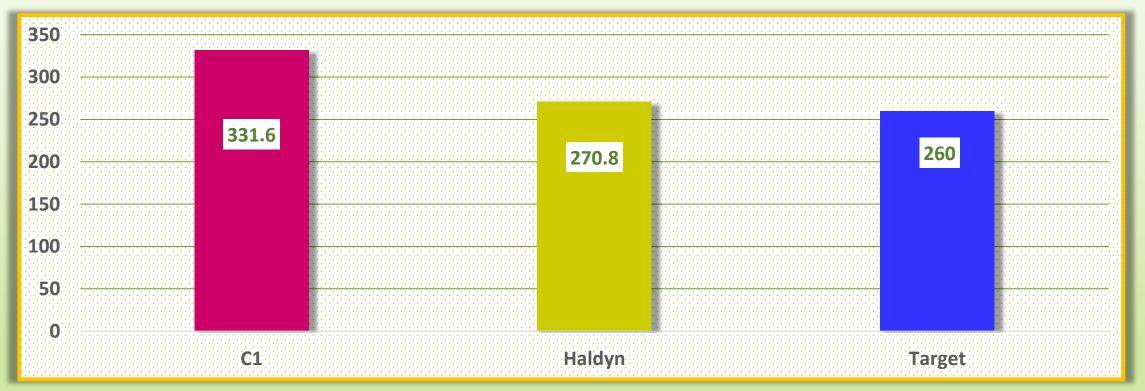




Production decreased in 2023-24 due to stoppage in production for relining of Furnace from 200 tpd to 285 tpd

Specific Energy Consumption – Electrical and Thermal

% Improvement - 6.2%


% Improvement – 8.9%

Benchmarking with Competitors

Specific Electrical Energy Consumption Benchmarking with competitors

Source: Data Collected from CII Presentation

Our performance is better in spite of our competitor being significantly larger in capacity, which automatically lends and economy of scale advantage to our competitors

Energy Saving Projects planned for 2024-25

SN	Title of Energy Saving project implemented	Annual E Savings	To be Invest	
		Units Million	Rs Million	Rs Million
1	Compressor cooling secondary circuit PHE pumps to be stopped by circulating direct cooling tower water.	0.33	2.96	0.5
2	8 nos. Energy inefficient pumps to be replaced.	0.27	2.79	0.8
3	Installation of VFD for cooling tower fans.	0.015	0.14	0.4
4	Replace F-4 Plant Blower-41 with New Energy Efficient Blower	0.013	1.32	0.3
5	Replace F-4 Plant Throat Cooling Blower with New Energy Efficient Blower	0.008	0.08	0.15
6	Replace F-4 Plant FH Combustion Blower with New Energy Efficient Blower	0.016	1.56	0.6
		0.652	8.85	2.75

Energy Saving Projects implemented in Last 3 years

Year	No of Energy saving projects	Investment (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal)	Total Savings (INR Million)	Payback period (In Months)
FY 2021-22	4	4.2	0.469	0	4.23	12
FY 2022-23	7	3.32	0.49	0	4.445	9
FY 2023-24	11	76.9	1.8	3172	11.2	84**

** Despite a long payback period the projects for 23-24 were executed due to the focus on energy savings...

Energy Saving Projects implemented in Year 2021-22

S	Litle of Energy Saying project implemented	Elec Sav	nual trical ings eved Rs Million	Total Annual Savings Rs Million	Invest. Made	Payback months
1	Air leakages arrested & plugged the unwanted tapping's.	0.009	0.082	0.08		
2	Single energy efficient pump installed at cooling tower in place of 2 pumps.	0.245	2.212	2.21	0.4	2.5
3	Mould heating oven converted to gas oven.	0.105	0.948	0.61	8.0	16
4	Reciprocating comp. replaced with screw comp.	0.110	0.988	0.99	3	37
	Total for 2021-22	0.469	4.23	4.23	4.2	

Energy Saving Projects implemented in Year 2022-23

	SN	Title of Energy Saving project implemented	Annual E Savings Units Million		Total Annual Savings Rs Million	Invest. Made	Payback months
I	1	Energy saving in compressors. Cent. comp. surge level critically analyzed & reduced min. amp setting from 34A to 32A.(At 11 KV), which reduced the blowing of air to atmosphere during low demand condition.	0.037	0.33	0.33	0	0
	2	HT Compressor intercoolers replaced with new coolers.	0.108	0.97	0.97	1.4	18
ı	.5	LT compressor new cooling water system installed with higher capacity PHE.	0.024	0.21	0.21	0.4	23
П	4	HP, LP header separation done.	0.106	0.95	0.95	8.0	11
ı	5	Vibrator tray magnetic coils replaced with imbalanced motor.	0.210	1.90	1.90	0.5	4
	6	Cullet washary vibratory Seivear drive replaced with unbalanced motor.	0.009	0.08	0.08	0.1	15
	7	Small high pressure compressor installed in workshop.	0.073	0.66	0.66	0.12	3
		Total for 2022-23	0.493	4.44	4.44	3.32	

Electrical Energy Saving Projects - Year 2023-24

SN	Title of Energy Saving project implemented		Electrical achieved	Total Annual Savings	Invest. Made	Payback months
		Units Million	Rs Million	Rs Million	Rs Million	
1	Comp discharge pipe size increased from 6" to 8". Reduced the pressure drop. HP line from F3 to F4 size increase from 8" to 12"	0.05	0.49	0.49	0.30	5
2	Reduced bends & Removed PRV from LP line.	0.03	0.28	0.28	0.20	9
3	Compressor room isolated with Coco coir sheets with water spray to maintain efficiency of comp suction filters & keep comp room temp down.	0.07	0.66	0.66	0.20	5
4	Power factor maintained Near to Unity.	0.00	2.50	2.50	1.10	6
5	Mould cooling blowers replaced with Energy efficient blowers of LWN.	0.96	8.69	8.69	11.00	22
6	Separate low pressure blower installed for conveyor cooling.	0.24	2.17	2.17	0.40	3
7	Furnace & throat cooling blowers replaced with energy efficient blowers from LWN.	0.31	2.82	2.82	10.00	43
8	ISMC pusher cooling changed for compressed air to blower air pipe	0.02	0.15	0.15	0.01	1.5
9	Additional air dryers installed to reduce pressure drops.	0.11	0.99	0.99	0.50	6
	Total Energy saving for 2023-24	1.80	18.76	18.76	23.71	

Thermal Energy Saving Projects - Year 2023-24

SN	Title of Energy Saving project implemented		thermal ings	Total Annual Saving S		Paybac k months
		SCM Of Natural Gas	Rs Million	Rs Million	Rs Million	
1	Gas consumption reduction. 1.All distribution lines checked for leakages & sealed. 2. Regular combustion analysis furnace, distributor, forehearth temp. were set to run burners at minimum fire. 3.Regular burners & gas mixers.cleaning. 4.The conditioning of glass in distributor was done through top & bottom cooling instead of running burner on excess fire.	82125	2.79	2.79		
2	Annealing lehrs 4 nos replaced with energy efficient Lehrs.	262800	8.41	8.41	66.00	94
	Total Energy saving for 2023-24	344925	11.20	11.20	66.00	

Innovative Project-1

Generally for compressor cooling, <u>Soft water</u> is provided through MS Pipe lines which was choking & leaking. Choking affecting comp performance due to low cooling. After a brain storming session we concluded that replacing MS lines by SS would result in minimal heat exchange which will improve the cooling which would subsequently improve the compressors efficiency. Furthermore, this will result in low corrosion / choking of heat exchangers.

Compressor cooling water line

replaced with SS.

Investment made-80 Lacs

Annual saving- 16.5 Lacs

Payback- 5 Years

Status - Successfully completed

◆ Innovative Project-2

The Glass manufacturing environment is dusty and choking of filters by dust and glass cullet results in significant inefficiency of blowers and compressors.

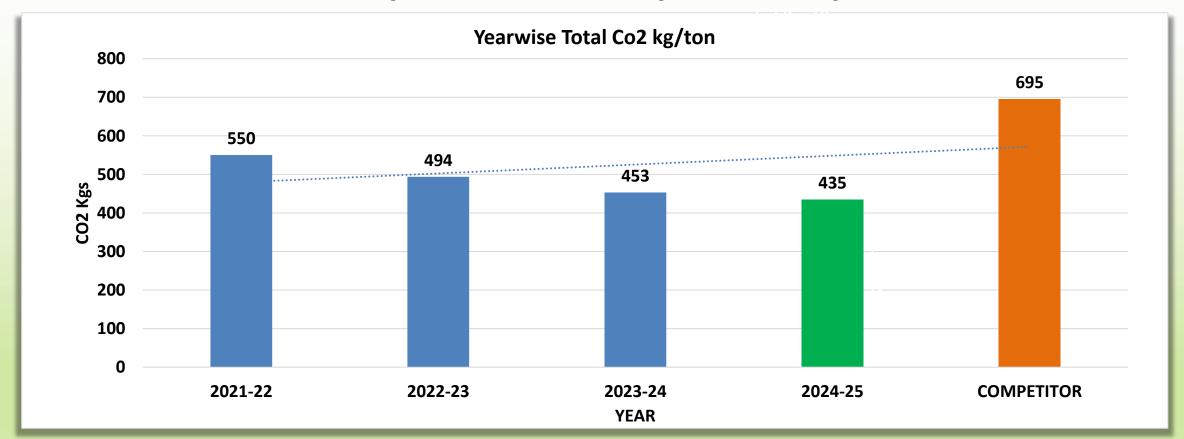
A civil wall or sheet partition could restrict dust but the air suction of compressor and blowers could be compromised. We came up with an idea of partition using **Coco coir** to manage sufficient volume of suction air whilst preventing dust and cullet particles, which also resulted in reduction of temperature of compressor room. This is also helpful in maintaining humidity during monsoon.

Coco Coir curtain / Partition installed in comp room.

Investment made- 2 Lacs
Annual saving- 6.6 Lacs
Payback- 4 Months
Status – Successfully Completed

Renewable Energy Utilization

Offsite


Year	Source (Solar, Wind, etc.)	Total Installed Capacity (MW)	Capacity Addition (MW)	Total Generation (million kwh)	Share % w.r.t to overall energy consumption
FY - 2021-22					
FY - 2022-23					
FY - 2023-24	Hybrid	1.49		5.123	20.88%

** We made a small beginning in 23-24 to get familiar with this option & to prepare a roadmap of creating The infrastructure for deriving higher benefits. Presently we are working on Group captive model and will start utilization of 100% RE by June-2025

GHG Inventorisation

☐ Scopes included- Scope- 1 & Scope-2

GHG EMISSION INTENSITY

We are following all measures towards achieving ESG goals.

GHG Inventorisation

GHG REDUCTION ACTION PLAN

- ☐ Use Of Renewable Energy
- Installing Renewable energy- Group Captive Hybrid power for total capacity.
- ☐ Reduction of Energy Consumption
- Improve efficiency of fuel usage
- Curb emissions related to growth through green industry practices.
- Reduce consumption through the exchange of knowledge, training, awareness campaigns.
- Replacement of old Equipment with Energy Efficient latest technologies.

We have brought extreme awareness in our employees about energy conservation resulting in benefit to environment.

Green Supply Chain Management

Procurement Policy

Supplier Selection -Evaluation & Reevaluation Procedure

1.Purpose: -

Examine Supplier / Service Provicer compatibility to provide material / service as per HGL defined specification & within stipulated timelines.

2. Scope:-Raw Material

Raw Material Packing Material

3.Responsibility Functional HOD Purchase Manager

4. External Reference ISO 9001 Clause 8.4

5. Terms used

HGL – Haldyn Glass Ltd.

COC - Code of Conduct for External Service provider

Procedure

- Request for business to be shared by HGL via email with Supplier / Service provider (Vice versa)
- b) Once both the party (HGL & supplier) agrees to the business initiation, formal meeting' telephonic discussions will be held b/w both the representatives.
- c) After provisional understanding about suitability of supplier capabilities to provider service / material as per HGL requirement, COC to be shared by HGL with supplier
- d) COC to be signed by Supplier and returned back to HGI for review and confirmation.
- e) Once COC approved, format evaluation programme will be scheduled in mutual agreement regarding dates.

f) Energy Efficiency shall be considered as important aspect during procurement applicable header items (RM.PM.Fuel)

- g) Supplier Evaluation Form PUR-F-003 to be shared by HCL with supplier for Selfassessment
- h) Same form to be verified against evidences during physical / remote audit.
- Audit to be conducted by HGL Quality / Purchase representative at supplier end.
 After completion of Audit Action plan to be prepared to fill gaps;
- Time line for closing gaps to be mutually agreed.
- k) Once actions are completed as per plan, supplier needs to submit it along with evidences to HGL.
- I) HGL auditor will verify actions and evidences for its effectiveness.

Supplier Selection -Evaluation & Reevaluation Procedure

| Fig. 10 | Fig. 11 | Fig. 12 | Fig.

- m) HGL specification to be shared with supplier for sign off by supplier.
- n) Once this is approved, sampling process will start.
- o) In Case of RM, raw material receiving inspection (BHF-DI-003) procedure to be followed during sample inspection.
- p) In case of PM, Incoming Inspection Procedure (QAQC-DI-003) to be followed during sample inspection.
- q) After sample approval, initial three lots (possible minimum quantity) to be analysed for acceptance and timely delivery.
- After successful completion of initial three deliveries supplier to be termed as approved vendor and same needs to be amended in approved vendor list PUR-L-001.
- For all approved vendors, Vendor Performance Monitoring (PUR-F-002) to be followed on yearly / half yearly / quarterly basis
- In case of process / design change at supplier end, re-evaluation audit needs to be scheduled as per same procedure.

7.Related Documents/Records:

Supplier Evaluation Form FUR-F-003 raw material recaving inspection (BHF-DI-003 Incoming Inspection Procedure (DAQC-DI-003) approved vendor list PUR-L-001 Vendor Performance Monitoring (PUR-F-002)

8. Revision Record :

Rev Number	Revision Description	Rev Date	Issued to
OC	Synchronization as per IMS document control procecure P/PUR/002.	01/01/2023	None
UI	clause b.fadded	J1/J1/2024	None

Prepared by	Approved by	
Dharmencra Dubey	N A Shetty	
Purchase Manager	Purchase Head	

Action Plan to Expand Green Supply Chain

Initiative	Details
Cleaner Material Sourcing	Will develop suppliers who source their materials using environmentally responsible methods. Audit & help vendors in their green initiative.
Lower transport Emmissions	This can involve sourcing materials from nearby suppliers to reduce carbon emissions due to transportation and delivery. Reduce emissions by using more efficient transportation systems and cleaner alternative fuels.
Logistic Optimization	By strategically locating distribution facilities and optimizing truckloads to reduce empty trailer space. Will try to lower transit mileage and reduce environmental footprint.
Certifications	Will avoid engaging with suppliers that use banned products or materials by requesting certain types of certifications.

Energy Monitoring System

		ENER	SY MO	ONITO	ORING	FOF	RMA	Γ						
Sr. No	Description	Average (From Apr to March)	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
1	Glass Draw (MT) Average													
2	Cullet %													
3	Power Consumption (GEB)													
4	Power Consumption (DG)													
5	Power Consumption (CPP)													
6	Total Power Consumption													
7	Power consumption Per Ton Glass (KWH/Ton)													
8	CPP Gas													
9	CPP SFC													
10	Dist + FH + Lehr - Total Gas													
11	Furnace Melter Gas													
12	Furnace Gas/Ton (SCM/Ton)													
13	Total Gas (Fur + FH + Lehr + CPP)													
14	Other Gas (Foundry + Canteen+ ACL)													
15	Plant Total Gas consumption													
16	Plant Total Gas & Oil Per Ton													
17	Plant WE + FH + Lehr Gas per Ton													
18	Furnace Oil													
19	Total Energy Consumption MKCAL													
20	Energy For Glass (KCAL / MT)													

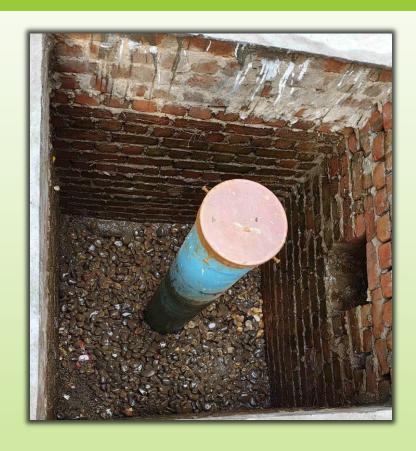
Energy Monitoring System

								F-3	Mould (Cooling Blow	er											F-4	Mould Co	oling Blo	wer										Compresso	or					
Date	М	CB-30	М	CB-31	М	CB-32	М	ICB-34		MCB-35		CB-1	CCE	-2				М	CB-41	мс	B-42		B-44	МСВ																	\top
	кwн	Freq	кwн	Freq	кwн	Freq	кwн	Freq	KWF	f Freq	кwн	Freq	кwн	Freq	Total	F-3 Production (Ton)	F-3 F-3 Production Power / (Ton) Ton KWH Freq	кwн	Freq	кwн	Freq	кwн	Freq	Total	F-4 Production (Ton)	F-4 Power / Ton	HT Comp	LT Comp-1	LT Comp- 2	LT Comp-3	NEW ATLAS 500 KW	Screw Comp-1 & ELGI COMP (22KW)	IR Screw Comp 1 (75KW)	IR Screw Comp 2 (75KW)	IR Screw Comp-3 (110 KW)	Kaesar Comp	Comp Total	Total Production (Ton)	Total n Power / Ton		
																																									1
						-																					-		<u> </u>											—	+
																																									+
									+			+															+													<u> </u>	+-
																																									+
																											-														—
						-													-								-		-												+-
																			1								+		1											<u> </u>	+
																																									+
																																									4
	-								+										_	-		-							-												+-
												+															+														+-
																																									+
																																									†
																											-														
	-								1			1															+		-												+
	1		1			-			+			+		\vdash					_			1					+		-												+-
			1			+			+			+		+					 			+			\vdash		+		\vdash												+-
												1															+														+
									1																															<u> </u>	\bot
																	<u> </u>																								Щ

◆ Net Zero Commitment

Haldyn Glass Committed to achieve Net Zero by 2035

Sr. No.	Initiatives	Details
1	Use of renewal energy.	Have plan to get 100 % electrical power from Renewable sources.
2	Reduction of energy consumption.	Energy saving initiatives is a contineous process.
3	Carbon credit.	Will try to trade carbon.
4	Use of alternative fuel	Oxy Fuel furnace, Electric forehearths
5	Increased Glass Recycling.	Will use maximum glass cullet.
6	Other Initiative	Conservation forests (without the use of wood) Developing Forests with selective Harvesting. (Tree plantation)


We will continuously scout new technology to explore avenues for energy conservation.

Environmental Initiatives

Returning to the Mother Earth - Ground Water Recharging

Prepared Rain Water Harvesting well for Land Charging
- 03 Nos in plant premises

☐ Tree plantation drive for Environment

Thank You

Contact Us:

Mr. Manraj Meena - 7383308908

Mr. Deepak Gaikwad - 9970053925

Mr. Deepak Singh - 8758907003

